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Onsager’s algebra and superintegrability 

Brian Davies 
School of Mathematical Sciences, Australian National University, GPO Box 4, Canberra, 
ACT 2601. Australia 

Received 3 January 1990 

Abstract. We consider the irreducible representations of the Onsager algebra, and show 
that for a finite system, possessing such an algebra leads to an Ising-like structure in the 
spectra of associated Hamiltonians and transfer matrices. The chiral Potts model is 
considered as an example. For transfer in the diagonal direction, it is known to be 
superintegrable. For transfer in the principal direction, a new superintegrable solution 
manifold is found. 

1. Introduction 

The determifiation of the free energy of the planar Ising model in zero magnetic field 
is a cornerstone in the theory of phase transitions and critical phenomena, laid by 
Onsager (1944). In that paper, the transfer matrix along a principal lattice direction 
was diagonalised and the partition function obtained. Onsager’s work was simplified 
by Kaufman (1949) and by Schultz et a1 (1964), showing that the fermion algebra is 
natural for the Ising model. Important as these results are, there is much more to be 
found in Onsager’s work. He discovered the star-triangle relation and demonstrated 
the existence of commuting families of transfer matrices as a consequence. Since then, 
Baxter (1982) has used commuting transfer matrices as a powerful tool for producing 
new solutions of exactly solvable models. The star-triangle relation has grown into 
the theory of Yang-Baxter equations (Kulish and Sklyanin 1982), also it is the 
foundation of the quantum inverse scattering method (Faddeev 1980, Thacker 1981). 

Onsager also set up an algebra in his original paper; in fact this was the crucial 
step in his solution of the Ising model. Scant attention has been paid to the Onsager 
algebra since it played no part in the solution of the six- and eight-vertex models, nor 
in subsequent exact solutions of statistical mechanics models. However, it has received 
mention in a number of papers over the past few years. Dolan and Grady (1982) 
considered Hamiltonians H of the general form 

H = A,+ kA, ( 1 . 1 )  

where k is a parameter and A. and A I  given operators. They showed that the 
Dolan-Grady conditions, namely 

[AI 9 [AI 9 [A ,  9 Aolll = 16[AI I A01 [A,, [A,, [A , ,  A1l l l  = M A O ,  4 1  (1.2) 

are sufficient to guarantee that there is an infinite sequence of commuting operators 
for H. This sequence is in fact generated by an Onsager algebra. The Ising model 
was the only concrete realisation which they gave. Subsequently, von Gehlen and 

0305-4470/90/122245+ 17%03.50 @ 1990 IOP Publishing Ltd 2245 



2246 B Davies 

Rittenberg (1985) considered some Z,% symmetric quantum spin chain Hamiltonians 
of the form ( l . l ) ,  and presented strong numerical evidence that they exhibit Ising-like 
behaviour in their spectra. They also observed that these chains satisfy the Dolan- 
Grady condition, Recently, a new exactly solvable two-dimensional lattice model-the 
chiral Potts model-has been discovered (Baxter er a1 1988). It has commuting families 
of transfer matrices, for which the commuting Hamiltonians are Z, symmetric chains 
of the form (1.1). A particular special case is the superintegrable chiral Potts model 
(Albertini et a1 1989, Baxter 1988), which has much Ising-like structure in its solution 
even though it is an N-state model. The corresponding quantum spin chain is the one 
investigated earlier by von Gehlen and Rittenberg (1985), and again by Albertini er a1 
(1989). These investigations rely heavily on numerical computation. However, Baxter 
(1988) found an inversion identity-at least for the ground state sector-and used it 
to write exact formulae for eigenvalues in that sector. In a recent paper (Baxter 1989), 
Baxter has shown how these results may be used to exhibit many fascinating new 
features of the superintegrable chiral Potts model and of an inverse model. This work 
is based on the Ising-like structure of the eigenvalues. 

In this paper, we will be concerned with finite-dimensional Onsager algebras, and 
with irreducible representations thereof. The general situation, for a Hamiltonian of 
the type (1-1), is that there are a number of sectors labelled by the quantum numbers 
of symmetries such as invariance under spin and spatial translation. The linear space 
on which H acts may be decomposed into invariant subspaces 'V and on each of these 
the restrictions of A. and A ,  are defined as endomorphisms of 'V (linear transformations 
taking 'V to 'V). We will simply refer to them as operators; when necessary we will 
explicitly indicate the invariant subspace 'V to which they are restricted. 

The plan of the paper is as follows. In section 2 we consider the Onsager algebra 
as a classical Lie algebra, and show that the roots have a particularly simple structure. 
This completely determines the form of the eigenvalues of H in any irreducible sector 
(as a representation of the algebra). We show in section 3 that such a sector is the 
direct product of n factors of dimension d,, 1 sj s n, and that the eigenvalues in that 
sector fit the general form: 

n 

A ( k )  = ( (Y + p k )  + 4 m, J1+ k 2  + k(  z, + z; I )  m, = - sJ, -sJ + 1, . . . , sJ. (1.3) 
, = I  

Here z,, 2,-' are the distinct pairs of zeros of a characteristic polynomial of degree 2n 
and d, = (2s, + 1) is the dimension of an irreducible representation of eI(2, %) associated 
with the pair z,, 2;'. The linear contribution comes from the fact that the operators 
A. and AI may have non-zero trace in any sector. The factor 4 comes from the 16 in 
the Dolan-Grady condition, and ultimately, from Onsager's choice of normalisation. 
Of course, it is necessary to find the constants z,, z,-' using some information additional 
to the algebra, such as the inversion identity given in Baxter (1989). 

In section 4 we examine transfer matrices in the principal direction which may be 
diagonalised using the same algebra. We show that Onsager's original formula for the 
eigenvalues of the Ising model transfer matrix in the principal direction extends 
naturally to the general case. Sections 5 and 6 are devoted to the chiral Potts model. 
We look at the superintegrable Z N  chain in section 5 ,  showing in particular how the 
fundamental building blocks-the irreducible representations of the algebra-fit 
together to produce the spectrum. In section 6 we examine the chiral Potts transfer 
matrix in the principal direction, and show that there is a superintegrable solution 
manifold which is distinct from the corresponding superintegrable solution manifold 
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for transfer matrices in the diagonal direction. Section 7 has a few concluding com- 
ments. 

In presenting the more mathematical results of sections 2-4, we have chosen to set 
out the principal facts as theorems and proofs, in the interest of delineating the principal 
ideas. 

2. Finite-dimensional Onsager algebra 

Let 7f  be a finite-dimensional complex vector space, let A" and A I  be operators in V, 
and let G I  be the commutator 

[ A I ,  A01 = 4G1. ( 2 . 1 )  
Then we may define an infinite sequence of operators A,,, by 

The set will generate a Lie algebra using closure under the operations of addition, 
multiplication by complex numbers and Lie multiplication: the latter defined by the 
commutator. We will have an Onsager algebra 2I if the further conditions 

[ A , ,  Am1=4G1-m (2.4a)  

[ GI, A m  1 = 2Am+, - 2Am - 1  (2 .4b)  

[ G I ,  Gm1=0 ( 2 . 4 ~ )  

hold. Equations ( 2 . 2 )  and ( 2 . 3 )  are a subset of these: the extra relations are an infinite 
set of constraints. Two such constraints come from the relations [ A , ,  A , ]  = [ A , ,  A,]  = 
[ A , ,  A - l ] ,  giving the Dolan-Grady conditions which are therefore necessary for the 
existence of an Onsager algebra: they are also sufficient to guarantee that the algebra 
generated by (2 .1)  to ( 2 . 3 )  is an Onsager algebra (Dolan and Grady 1982). 

The set A ,  generates a subspace in 2I which must be finite dimensional. That is, 
for some value of n there must be a linear recurrence relation, of length ( 2 n  + l) ,  namely 

( 2 . 5 )  

The algebra imposes constraints on the coefficients a k .  From ( 2 . 3 )  we find that the 
Gk also satisfy the recurrence relation ( 2 . 5 ) .  Using ( 2 . 4 ~ )  we may then obtain the 
more general recurrence relations 

(2 .6a )  

(2 .66)  

where now 1 is arbitrary. Setting 1 = 0 in (2 .6b)  and using the fact that Gk = - G - k ,  
we also find the condition 

(2.7) 
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and this leads to the conclusion that (2.5) is unaffected by the replacement f f k  + a - k .  
That is, we also have the recurrence relation 

This imposes no additional constraints on % if the coefficients are either symmetric or 
anti-symmetric: 

(Yk * a - k .  (2.9) 

This is the general situation, as we now show. 

Theorem 1. If n is the minimal value for a linear recurrence relation between the A,,,, 
then the coefficients a k  are either symmetric or anti-symmetric in k. 

Prooj Assume the contrary. Then we may obtain two independent relations using the 
combinations (ak * a - k ) .  If a,  = * a-,, then one of these is of length (2n - l ) ,  contrary 
to the fact that n is minimal. If an # *a-,,,  then we may use these two in (2.66), with 
1 = 0, together with GPk = - Gk, to eliminate Gn altogether. This gives a recurrence 
for Gk of length (Zn- l ) ,  and (2.3) implies the same relation for the A k .  Again we 
have a contradiction. 0 

It is an immediate corollary that there are no minimal recurrence relations of even 
length. 

The recurrence relation is a linear constant coefficient difference equation of order 
2n. All solutions of such equations may be expressed in terms of a fundamental 
solution set, determined by the characteristic polynomial f( z )  (Brand 1966): 

(2.10) 

Because of the symmetry of the coefficients, f ( z )  = * zZn+l f (  l / z ) ,  with the sign chosen 
according to whether the a k  are even or odd. Consequently those zeros not equal to 
*1  occur in reciprocal pairs. Suppose that the zeros are all distinct, with none equal 
to i l .  Label the zeros in pairs, i.e. the zeros are z , ~ ,  1 sjs n, with z-] = l / q .  Then 
the general solution of the recurrence relation may be written in terms of new operators 
Ef via the following invertible linear transformation (in a): 

n 

A,,, = 2  (z ,"EJ+zl-"EJ-) .  
j = 1  

(2.11) 

The coefficients of the inversion are obtained from Lagrange interpolation polynomials 
(Dahlquist and Bjorck 1974) f ; ( z )  defined as 

f ; ( z ) =  j = 1  fi (3) z / - z j  J = 1  fi ( 2 - Z - j ) .  z , - z - j  
(2.12) 

j # /  j t f  

They have the property that 

Introduce the following notation for their coefficients as polynomials in z :  

k = - n  
(2.14) 
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Then it follows that the inversion of (2.11) is 

Now rewrite (2.11) in the form 
n 

A ,  = 1 (2," + z , - ~ ' ) ( E ; +  E,-) + (2," -z, '")(E,+-E,) 
, = I  

and use this in (2.3). We obtain 

4Gm = [ A m ,  A01 

2249 

(2.15) 

(2.16) 

n 

= C ( 2 7  + z,-"')[ET + El- ,  A,] -k (z," - z,"')[E: - E,,  A,] .  (2.17) 
, = I  

Since the G ,  are antisymmetric in m, we find that [ E :  + E,, A,]  = 0 and that 

G, = c (2," - zFm)H,  (2.18) 

where 4H, = [ E : -  E,-, A , ] .  The inversion of (2.18) is similar to (2.15). Now we may 
show an important result. 

Theorem 2. If the zeros of the characteristic polynomial f( z )  are all distinct, with none 
equal to +1, then the new generators E:, H, of the Onsager algebra satisfy the relations 

[ E : ,  Ekl=ajkHA (2.19a) 

[q, J!?;]=*26j,E;. (2.19b) 

, = I  

Proof: By direct computation using (2.15), we have 
n - l  n - l  

[ E : ,  E i 1  = a  c c P,-./Pk-.m[Af, Am1 
/ = - n  ,=-n 

n - l  n - 1  

= C C P j + . I P k - . m G / - m  

= c P,+,/Z;IHk 

= aIkHk. (2.20) 

/ = - n  , = - n  

n - l  

/ = - n  

This is the result (2.19a).  Similar computations give the relations (2.19b). 0 

In this case we see by construction that \U is the direct sum of n copies of the 
simple algebra d ( 2 ,  %'). The new generators are the Cartan-Weyl basis (Humphreys 
1972). The root structure is particularly simple: the roots are mutually orthogonal and 
the Dynkin diagram is completely disconnected. 

Now consider the case of repeated zeros, with none equal to f 1. The solution of 
the recurrence relation may still be written in terms of a fundamental solution set. 
Suppose there are n pairs of zeros, with r distinct pairs. Then (2.11) takes the more 
general form 

(2.21) 
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where U,+,, and u / - , ~  are fundamental solutions of the recurrence for 1 sjs n. We 
choose the first r fundamental solutions as 

U,+,, = z," U] ,, = zj-" l < j < r  ( 2 . 2 2 )  

where zJ are the distinct zeros. Solutions for a multiple zero are z : ,  mz," , ( m ) (  m - 
l)zJ", . . . , and all except the first have a multiplicative prefactor m. Thus we have 

A o = 2  (,??:+ET). 
j = 1  

( 2 . 2 3 )  

Theorem 3. If the characteristic polynomial f (  z )  has 2 r  distinct zeros, with none equal 
to *l, then the Onsager algebra 2l is generated by 2 n  + r operators E : ,  1 s j s n, and 
H,, 1 sjs r. They satisfy the relations (2.19) for 1 S j <  r, while the E:, r <js n, 
commute with all the generators of PI. These latter operators generate the centre of 21. 

Proof: The calculations of ( 2 . 2 0 )  may be repeated, with the same result. Once this is 
done, ( 2 . 2 3 )  and (2.17) show that H, = 0, j > r. This being so, E;, j >  r, commute 
with all elements of 2l. By construction, the set E : ,  r < j  s n, generate the centre 
of a. 0 

Finally, if there are zeros equal to *l ,  we again obtain operators in the centre of 
3. Consider the case that 1 is a zero. Then, we may label it as zril. If -1 is not a 
zero then 1 has multiplicity equal to at least two, and we may take 

']+,,'+I = a,-,,+, = m. ( 2 . 2 4 )  

Consequently, the ( r +  1)th term in the expansion of A ,  is 2 ( E : + ,  + mE;+ , ) ,  and ( 2 . 2 3 )  
is modified to 

A o = 2  ( E ; + E ; ) + 2 E : + ] .  ( 2 . 2 5 )  

Now return to ( 2 . 1 7 ) .  The ( r + l ) t h  term is 2 [ E ~ + l + m E ~ + , , A 0 ] = 2 [ E ~ + 1 , A 0 ]  and 
from the fact that the G, are antisymmetric in m, we find that [E:,,, Ao]=O. Thus 
H,+, = 0. A similar argument prevails if -1 is a zero. Finally, if +1 are a pair of zeros, 
then we take 

a j + . r + l  = 1 U/- , '+ ]  = - 1. ( 2 . 2 6 )  

This pair of zeros is not reciprocal. Now, the ( r +  1)th term in the expansion of A,,, 
is 2(E:+, + (-l)mEF+l), and a similar argument again gives that Hr+, = 0. Finally we 
have the general form of theorem 3 .  

/ = 1  

Theorem 4. If the characteristic polynomial f ( z )  has 2 r  distinct zeros, not counting 
i l ,  then the Onsager algebra 2l is generated by 2 n  + r operators E T ,  1 s j  s n, and Hj, 
1 6  js r. They satisfy the relations ( 2 . 1 9 )  for 1 sjs r, while the E T ,  for r < j S  n, 
commute with all the generators of 8 .  These latter operators generate the centre of 3. 

3. Eigenvalues of A,, + kA 

Now we are able to address a question which is most salient for quantum Hamiltonians 
of the form (1.1): the general dependence of the eigenvalues on k. In the case that 
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A. and A, are Hermitian operators, the Hamiltonian is also Hermitian for real values 
of k, with real eigenvalues. In anticipation of the final result, we make the variable 
change 

zj = exp(-iOj). (3 .1)  

Then for the Hermitian case, the 6, will be real. Whether or not this is the case, we 
will replace the combinations ( z j * z J y ' )  by trigonometric functions. H is a one- 
parameter family of operators depending continuously on k, and the eigenvalues and 
eigenvectors must also have continuous dependence. Apart from k = 0 and k + fa, 
the dependence must also be analytic in k. The objective of this section is to prove 
the following theorem. 

Theorem 5. The eigenvalues of the operator H ( k )  = A,+ kA, are all of the form 
n 

A ( k ) = ( a + p k ) +  4mjJ1+k2+2kcos  6, mj = -s j ,  -sj + 1,  . . . , sj .  (3.2) 
j = 1  

Prooj First we observe that if A. and A ,  have a common eigenvector x, with eigenvalues 
CY and p respectively, then x is an eigenvector of the Hamiltonian belonging to the 
eigenvalue A ( k )  = ( a + p k ) .  More generally, for any pair of eigenvalues a and p of 
A, and A l ,  the intersection of the eigenspaces is a subspace of "Ir which is also an 
invariant subspace of both A, and A ,  on which both operators are diagonal. Call this 
invariant subspace Yap, then we may decompose "Ir into the direct sum of all such 
subspaces, and a part W on which the restrictions of A,  and Al  have no common 
eigenvectors. The restriction of 'i?l to Yap is commutative and Yap is an eigenspace of 
H with eigenvalue ( a + pk). This fits the formula (3.2) with n = 0. 

Consider now the non-commutative part. An irreducible representation has no 
common invariant subspaces of the operators A,  and A, (by definition), and therefore, 
by Schur's lemma, no central elements. Let Wy be a subspace of "Ir which is a minimal 
invariant subspace for A. and A , .  The restriction of A,  and A ,  to Wy, as matrices, 
generates an irreducible rev .?sentation of %, and theorems 3 and 4 show that the 
characteristic polynomial of .he recurrence relation for this representation has distinct 
zeros, none equal to * 1. Irreducible representations of the commutation relations 
(2.19) are given by the standard angular momentum operators of spin sJ, with dimension 
(2s, + 1 ) .  That is, we will obtain irreducible representations by the homomorphism 

cp(E:) = J, *iJY cp(H,)  = 23, (3.3) 
where J,, J,,, J, are the usual irreducible matrix representations of angular momentum 
of dimension (2s, + 1) .  Before we make these replacements in H itself, we must be 
careful to fix the origin. In the subspace Wy the operators A. and A, will have non-zero 
trace (in general). In fact, the addition of a constant multiple of the identity matrix 
to either (or both) makes no difference to the Dolan-Grady conditions or to the 
generating relations for the Onsager algebra 9. So from (2.16) the representation of 
H in the subspace Wy is 

( H ) y  = (a + p k )  + 2 2 (1 + k cos O j ) ( p (  Ef + E;)  - ik sin 6, q(Ef - E;)  (3.4) 
j = 1  

where the linear term fixes the trace, since the irreducible representations cp(E;) of 
Ef are traceless. Making the replacements (3.3), each term in the sum is a linear 
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combination: 

4 ( l + k c o s  8,)Jx+4ksin ejJ, , .  (3.5) 

(3.6) 

After a rotation in the xy plane we see that (3.5) is transformed to 

441 + k 2 +  k cos e, J , .  

This gives the quadratic part of (3.2). In fact, substituting this back into (3.4) gives 
an irreducible representation, and therefore proves that the formula (3.2) is the general 

0 form for all of the eigenvalues. 

We comment that restriction to subspaces Wy is nothing more than the usual 
consideration of sectors for a Hamiltonian. For many problems the sectors are deter- 
mined by simple explicit symmetries of the system, such as translational invariance. 
However, as we shall see, there may be further symmetries due to the Dolan-Grady 
condition, which amount to ‘hidden’ symmetries. 

4. Transfer matrices related to the operators A.  and A I  

Onsager’s original solution of the Ising model was for a transfer matrix in a principal 
direction of the lattice. This transfer matrix is the product of two non-commuting 
operators of dimension 2L: 

T = exp(aoAo) exp(a,A,). (4.1) 
It is clear from a later paper (Onsager 1945) that Onsager knew that transfer matrices 
in the diagonal direction commute with a Hamiltonian H (  k)  = A,+ kA, . For either, 
the common eigenvectors can be found, given a suitable representation of the operators 
A. and A,: finding the eigenvalues is an additional problem. For the principal direction 
this is not much more difficult than the construction of the eigenvectors. However, 
the transfer matrices in the diagonal direction are formed from products of 2 x 2  
matrices, one for each neighbouring pair in the row, 27d the eigenvalues of T are 
much more difficult to find than the eigenvectors of H !  ’~ davies and Abraham 1987). 
For the Ising model, the operators exp(aoAo) and exp(a,A,) are those required to 
construct the transfer matrix in the principal direction, and it makes no difference 
which direction is chosen, since the Ising model is superintegrable in the whole solution 
manifold. This is not so for the superintegrable chiral Potts model with N 2 3 .  We 
shall amplify this remark in section 6; however, it motivates the present section. 

The Dolan-Grady condition provides a commuting Hamiltonian for transfer 
matrices of the form (4.1). We state the result as a theorem, in a form which employs 
a slightly more general transfer matrix than (4.1). 

Theorem 6. If A. and A, satisfy the Dolan-Grady condition, then the transfer matrix 

T=exp(AaoAo) exp(a,A,) exp[(l -A)aoAo] (4.2) 
commutes with the operator 

sinh(2 -4A)a0 
sinh 2a0 H=coth2a,Ao+coth 2aoAI+ GI 

sinh 2Aa0 sinh 2( 1 - A)ao  
sinh 2ao (A, -A-,). - (4.3) 
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Proof: We first set A = O .  Then the assertion is equivalent to the formula 

exp( aoAo)H exp( -aoAo) = exp( -a,A, )H exp(alAl  ). (4.4) 
Products of the form exp(A)B exp(-A) have a well known expansion as an infinite 
series of nested commutators (Wilcox 1967). We use the Dolan-Grady condition and 
the definitions (2.4) to telescope these, giving 

exp(aoAo)A, exp(-aoAo) =cosh2 2a0A, +sinh2 2a0A-, -sinh 4aoG,.  (4.5) 

(4.6) 

A similar calculation gives 

exp(aoAo)G, exp(-aoAo) = cosh 4aoG, -4 sinh 4ao(A, -A-,)  

and there are corresponding results if the roles of A. and A, are interchanged: 

exp(-a,A,)Ao exp(a,A,) = cosh’ 2a,Ao-sinh’ 2a,A2 - sinh 4a,G,  (4.7a) 

exp(-a,A,)G, exp(a,A,) =cosh 4a lG ,  ++ sinh 4a,(A,-Ao). (4.7b) 

The result (4.4) follows by elementary calculation. The case that A is arbitrary is 
obtained by using a similarity transformation: the required Hamiltonian is 
exp(AaoAo)H exp(-AaoAo). A further short calculation using (4.5) and (4.6) leads to 
(4.3). 0 

We may use this to find the eigenvalues of the transfer matrix (4.2) in any irreducible 
sector of 8.  We make the symmetric choice A =:, as in Onsager’s original paper. It 
only remains to carry out the algebra. The ideas may be found in Onsager’s paper, 
and the results will be the same, but we cannot use his derivation which depends on 
special properties of the Pauli matrices. The Hamiltonian H is a linear combination 
of operators Ao, A,, , and in any irreducible sector the analogue of (3.4) is 

( H ) y = ~  co th2a l+p  coth2a0+2 1 (coth2al+cos 0, coth2ao)cp(ET+E;) 
n 

, = 1  

-i sin 0, cosech 2 a o ~ ( E T  - E,)  

while the analogue of (3.5) for the j th  term in the sum is 
(4.8) 

4[(coth 2a,  +cos 0, coth 2ao)Jx + (sin 6, cosech 2ao)J,]. (4.9) 
This is the generator of a rotation about an axis in the xy plane: the angle 8, between 
this axis and the x axis is found, using elementary trigonometry, to be 

(4.10) 

This is equivalent to (89d) of Onsager (1944). The representation of the transfer matrix 
is a direct product of matrix representations of rotations associated with each pair of 
zeros zJ, z,-’ That is 

cot 8, = (sinh 2a0 coth 2a, +cos 0, cosh 2ao)/sin 0,. 

( T ) ,  = exp(a coth 2al + p coth 2a0) fi exp[2y,(cos SjJX +sin 4 J y ) ] .  (4.11) 

Notice that we have written 2yJ in the exponential, since for the Ising case the matrices 
2Jk are the Pauli matrices. We find the constants y, by representing the j th  term as a 
three-dimensional rotation of the set J,, J,, J, .  From exp(taoAo) we get exp(2a0J,) 
and from exp(alAl)  we get exp(iO,J,) exp(4alJx) exp(-iO,Jx). Thus we must multiply 
a number of 3 x 3  matrices, and find the eigenvalues of the product. We know that 

,=1 
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the eigenvalues must have the values 1 and exp[*2yJ], so the trace gives the quantity 
1 +2  cosh 2y1. Carrying out the computations, we again arrive at a formula to be found 
in Onsager's original paper, namely 

(4.12) 

The eigenvalues are unaffected by a similarity transformation, so we have proved the 
following theorem. 

cosh yl = cosh 2ao cosh 2a, +cos 9, sinh 2a0 sinh 2a l .  

Theorem 7. The eigenvalues A of the transfer matrix (4.2) are all of the form 
" 

log A = (Y coth 2a, + p coth 2a0+ 2 m,yl mJ=-s, ,-s,+l , . . . ,  sl (4.13) 
J = l  

with the yj given by (4.12). 

5. Superintegrable chiral Potts model 

The chiral Potts model is an N-state model, which is Z N  symmetric, and for which 
there is a star-triangle relation (Baxter et al 1988). The interactions are between 
adjacent N-state spins on a square lattice; the chiral property resides in the fact that 
these are not symmetric functions of the two spins. We give the formula for the weights 
in section 6 .  Our interest in this section is in the superintegrable case (Albertini er a1 
1989), which for N = 2  is the Ising model. Transfer matrices are parametrised by a 
pair of variables: a rapidity and a temperature-like variable which we label as k (it is 
the k' of Baxter). For periodic boundary conditions, transfer matrices with the same 
value of k commute, they also commute with a common Hamiltonian. The latter 
generates an Onsager algebra, and we write it as 

H =  H o + k H l .  (5.1) 

For a row of L sites, Ho and H ,  act in a vector space which is the direct product of 
L copies of %" :Zr= %? 0 %?? 0 . . . 0 %?. They are built from operators X I  and Zl  
which act non-trivially only in %;" and which satisfy the relations 

x:  = z/ 2: =z /  ZIX, = w x , z / .  (5.2) 

Using the convention that states are labelled from 0 to N - 1, one convenient matrix 
representation is given by 

(&)I/ = 4,/+l(mod N )  ( z l ) t /  = ( 5 . 3 )  

where w is an Nth root of unity: 

w = e x p ( 2 d N ) .  

The formulae for Ho and H1 are 

(5.4) 

L N-1 

HO= C C ( I  - w - " ) - ' X ; "  (5.5a) 
/ = I  m = l  

L N - l  

H , =  C ( l - w - " ) - ' Z ; " z , N , ; " .  
/ = I  m = l  

(5.56) 
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With periodic boundary conditions, ZLTl  = Z1 . As von Gehlen and Rittenberg (1985) 
observed, in the representation where X ,  is diagonal, X(1 - w - " ) - ' X ; "  is the usual 
representation for the z component of angular momentum of a system with spin N/2 .  
This representation is obtained from (5 .3)  by the simple rule X ; = Z , ,  Z ; = X ; ' .  In 
fact, it was the empirical (numerical) observation of this fact for N = 2 , 3 , 4 ,  5 which 
led them to the formula for the weights of the integrable Hamiltonian. In  this 
representation 

L 

Ho= c M ,   MI)^ = S , , , [ ( N  - 1)/2 -A. (5.6) 
I =  1 

Using von Gehlen and Rittenberg's representation makes it easy to check the 
Dolan-Grady conditions. When this is done, we find that the operators Ha and HI 
satisfy 

[HI, [HI 3 [HI, H0111= N 2 [ K  3 H01 

AI by 

[Ha, [Ha, [Ha, ~ 1 1 1 1 =  N 2 [ H " ,  HI]. (5.7) 

The normalising factor N 2  is quite significant. I t  means that we must define A.  and 

A0 = 4N-'Ho AI = 4 N - ' H 1 .  (5.8) 
This has considerable implications. The operators Ho and HI obviously commute with 
the spatial and spin shift operators. The eigenvalues of these operators are, respectively, 
exp(2r iP /L) ,  0 s  P <  L-1, and e x p ( 2 r i Q / N ) ,  0 s  Q <  N-1; different sectors 
(irreducible representations of 2 l )  will be labelled at least by an integer pair ( P ,  0). 
However, the Dolan-Grady condition provides a further, hidden, symmetry. To see 
this without looking into the recursion relation (2.5), it suffices to use perturbation 
theory. For small k, the eigenvalues of H are close to those of Ha, and from the 
definition (5.6) these differ by integers. For a chain of length L, the maximum and 
minimum eigenvalues of Ho differ by ( N  - 1 ) L :  in any sector of given Q, the eigenvalues 
differ by multiples of N, so the different number of distinct eigenvalues of Ho is 
n = [ ( ( N  - 1)L- Q) /N]  where [ 3 stands for integer part. However, for small k 
theorem 5 informs us that the eigenvalues of ( A o +  k A , ) ,  in any irreducible sector, 
differ by integer multiples of 4. These two pieces of information must be fitted together 
via (5.8). The factor 4N-I appearing there implies that, for N > 2, at least N distinct 
irreducible representations of 91 are needed to reproduce the spectrum of H in just 
one sector labelled by the pair ( P ,  0). The integer n refers to the largest sector which 
must necessarily contain the ground state. This is the sector found by Baxter (1988). 
The Ising case is exceptional in that the two Q sectors are just even and odd parity, 
and there is no problem in using spin-; representations of a spin-4 problem. The 
dimensions of the P = 0 sectors, which are the sectors found by Onsager (1944), are 
of course 2". Just how many sectors are required for N > 2, or what is their exact size, 
is a question which will not be addressed in this paper. However, the complications 
are readily seen from the case of N = 3 with quite short chains. We give some relevant 
numerical data for short chains in the appendix. 

For the ground-state sectors the problem of finding the characteristic polynomial 
f(z) which determines the coefficients z,, z,-' has been given a closed-form solution by 
Baxter: he defines (Baxter (1989) equation (2.1 1 ) )  the functions 

(5.9) 
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which are in fact polynomials of degree n in J N .  (We have used 
2. )  Using (2.13) of Baxter (1989) in the form 

instead of Baxter’s 

1 - 2  

l + z  
lN12 =tan  812 = - (5.10) 

we recover, as the numerator, a polynomial of degree 2n in our variable z, which is 
the characteristic polynomial for the closure of the algebra in the ground state sector. 

We conclude this section with the comment that (5 .9)  comes from an inversion 
identity restricted to the ground-state sector (Baxter 1988). We also note that an exact 
recursive algorithm for the quantities cos 0, (again in the ground-state sector) was 
given by Albertini er a1 (1989),  based on exact perturbative methods together with an 
assumption of the form (3 .2)  proved above; whilst this is not a closed formula, it is 
more suitable for numerical computation. Moreover, Baxter et a1 (1989) recently 
obtained several heirarchies of inversion identities for the chiral Potts model, with no 
restriction to particular sectors. It should be possible to obtain information about all 
sectors from these, but such considerations are outside the scope of this paper. 

6. Superintegrability in the principal direction 

The Boltzmann weights for the chiral Potts model are defined, up to normalisation, 
by (Baxter et a1 1989) 

( 6 . l b )  

where up,  bp ,  cp,  dp are the standard homogeneous parameters for the chiral Potts 
model, restricted to lie on the curves 

a,” + k’b,” = kd,” 

ka,” + k’c,” = d,” 

k’a,” + b,” = kc,” 

kbp” + k’d,” = c,” . 
For fixed k and k’ ,  the rapidity determines a point on the curve (6 .2 ) .  We will also 
need the Fourier transforms of the weights. Since they are defined in an asymmetrical 
manner (Baxter 1989) we will repeat the definitions here: 

N- l  N - I  

m=O m =O 
w;= c w - m n W ,  @L= c w m n c m .  

Explicitly: 

(6.3) 

(6 .46 )  

The star-triangle relation which is satisfied by these weights leads naturally to the 
consideration of transfer matrices in the diagonal direction on the lattice. Suppose we 
draw one diagonal row of the lattice as in figure 1 ,  and associate two spin operators 
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1' 2' 3' 4 '  5 '  6'  

1 2 3 4 5 6 

Figure 1. One (distorted) row of a lattice in the diagonal direction. The operators U, of 
the interactions are indicated. 

U,,.., , U,, with the weights, using the representation of X , ,  2, given in (5.3). We define 
u2/-1 as 

N - I  

U,,-, = w n x y n .  
n = O  

( 6 . 5 ~ )  

That is, its entries between two spins s,, si = s, + n is the Boltzmann weight w,. The 
operators U,, are diagonal in the chosen representation, the entries for a state with 
adjoining spins s,, sltl = s, + n are Gn. Thus we find 

N-1 
U,, = 5' N-I ( co""'Gm) ZYZ;",;". (6 .5b)  

n = O  m=O 

The coefficient in the braces is the Fourier transform G i :  therefore the formula 
analogous to (6.5~) is 

( 6 . 5 ~ )  
n = O  

For the diagonal direction the transfer matrix is constructed from the product 
U1 U,. . . U,,-, , with special treatment of U,,  to get periodic boundary conditions. 
For the principal direction (figure 2) the symmetrised transfer matrix Tprinc is given by 

Tprjnc= (u2u4.. . U2L)1'2( U1 U, .  C J , L - l ) (  u,U4... U ~ L ) " ' .  (6.6) 
With these preliminaries complete, we consider the condition for superintegrability. 

For the diagonal transfer matrix the necessary condition is xp = y , ,  which fixes the 
rapidity p which is associated with the direction of transfer (Baxter et a1 1989, section 
6 ) .  The rapidity 4 is still free, and labels one-parameter families which commute with 
the Hamiltonian (5.1), (5 .5 ) .  All these Hamiltonians are built from the same pair of 
operators Ho and HI which are independent of the rapidities. However, we know 
from section 4 that transfer matrices of the form (4.2) for the principal direction may 
be constructed from Ho and HI and diagonalised using the Onsager algebra. Therefore 
it is natural to consider two spin operators U,,-,  , U,,, defined as 

N N 

U,,-, =exp J 1 ( l - ~ . - ~ ) - l X f )  U,, =exp K 1 ( ~ - w - ~ ) - ' Z : Z E ; ~  ( k = l  ( k = l  

1' 2 '  3' 4'  5 '  6'  

1 2 3 4 5 6 

Figure 2. One row of a lattice in the principal direction. The operators U, of the interactions 
are indicated. 
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The identity which links the forms ( 5 . 5 ~ )  and (5.6) is 
N-I k l  c 
k = l  ( 1 - 0  

In the representation (5.3) 2, is diagonal: the diagonal entries of U,, may be calculated 
using (6.8), giving the weights 

(@,,I Kj0) = exp( Kn). (6.9) 

Similarly, to recover the weights from U,,-, we use representation in which X I  is 
diagonal (= D2,-,), given by the similarity transformation X ,  = S-’Z,S where the unitary 
matrix S has the entries ( S ) ,  = N-” ’w- ‘J.  Thus U,,-, = S-’D,,-,S. A simple computa- 
tion gives the diagonal entries ( D21- l )nn = exp(-Jn). Performing the similarity transfor- 
mation, we get 

N - 1 

( w , /  W O )  = N-I umn exp(Jm). 
m=O 

(6.10) 

The right-hand side of (6.10) is the inverse Fourier transform, so the analogue of (6.9) 
is 

( w L /  w { )  = exp(Jn). (6.11) 

The superintegrable solution manifold for the principal direction is defined 
implicitly by (6.9) and (6.11). In the standard homogeneous parameters, the condition 
is that the factors which occur in the products (6.1 b) and ( 6 . 4 ~ )  be independent of k. 
The condition is the same in both cases, and is equivalent to 

wa,bp/cpdp = aqb,/cqdq. (6.12) 

This is a condition which connects the two rapidities. For transfer in the principal 
direction, each rapidity is associated equally with the direction of transfer, so (6.12) 
is also intuitively correct. 

7. Conclusions 

The main aim of this paper has been to investigate the consequences, for a finite-lattice 
model in statistical mechanics, of the Onsager algebra. The connection of the Onsager 
algebra with Ising-like behaviour in the spectrum of a Z N  symmetric spin chain was 
first noted by von Gehlen and Rittenberg (1985). Albertini e? al (1989) coined the 
word superintegrable ‘because the property of possessing Onsager’s operator algebra 
. . . is clearly responsible for the extra structure’. Again, Baxter (1988), on the superin- 
tegrable model, notes that the form found for the eigenvalues is consistent with a 
representation, in the ground-state sector, analogous to Onsager’s representation of 
the Ising solution. He says ‘in the relevant subspace there is a similarity transformation 
that takes Trow to a direct product of 2 x 2 matrices . . . it appears that the transformation 
is in fact independent of k, . . . but as yet this has not been rigorously proved’. Such 
a proof has been provided in this paper. 

As a finite-dimensional Lie algebra, the Onsager algebra has a particularly simple 
structure. This structure provides that a basis for an irreducible representation is a 
direct product of matrix representations of angular momentum operators. It does not 
imply that these representations must be spin-:. For the superintegrable chiral Potts 
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Table 1. Structure of irreducible blocks in the zero-momentum ( P  = 0) sector, for chains 
of length 3,4, 5,6, and for N = 3. 

t P, Q Dim 2" a P 8, 

3 

3 

3 

4 

4 

4 

5 

5 

5 

6 

6 

6 

5 

3 

3 

8 

8 

8 

17 

17 

17 

46 

42 

42 

4 0.0 
l(X1) 0.0 
2 -0.5 
1 (Xl) 1.0 
2 0.5 
1 (xl) -1.0 
4 -1.0 
2 (x2) 0.5 
4 0.0 
l(X2) 0.0 
1 (x2) 0.0 
4 1 .o 
2(~2) -0.5 
8 -0.5 
2 ( ~ 3 )  -0.5 
l(x3) 1.0 
8 0.5 
2 (x3) 0.5 
l(x3) -1.0 
4 0.0 
4 0.0 
2(X1) 1.5 
2(X1) -1.5 
1 (x4) 0.0 
l(X1) 0.0 
16 0.0 
4 0.0 
4 0.0 
4 0.0 
4 0.0 
4 0.0 
1 (x10) 0.0 
8 -0.5 
4 1 .o 
4 1 .o 
4 1 .o 
2(~5) -0.5 
2 (X2) -0.5 
1 (x5) 1.0 
1 (x3) -2.0 
8 0.5 
4 -1.0 
4 -1.0 
4 -1.0 
2 (x5) 0.5 
2 (x2) 0.5 

1 (x3) 2.0 
l(X5) -1.0 

0.0 
0.0 
1.5 
0.0 
1.5 
0.0 
1 .o 

-0.5 
1 .o 
1 .o 

-2.0 
1 .o 

-0.5 
0.5 
0.5 
-1.0 
0.5 
0.5 
-1.0 
-1.0 
2.0 
0.5 
0.5 

-1.0 
2.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
1.5 
0.0 
0.0 
0.0 

-1.5 
1.5 
0.0 
0.0 
1.5 
0.0 
0.0 
0.0 

-1.5 
1.5 
0.0 
0.0 

138.189 41.810 

70.529 

109.471 

102.181 28.628 
41.810 138.190 
129.664 50.336 

151.362 77.819 
41.810 138.190 
141.669 79.295 
234.090 115.136 

158.753 100.705 
145.909 126.628 

147.021 32.979 
120.609 59.391 
70.529 
109.47 1 

163.406 116.036 
170.137 9.863 
82.861 26.610 
136.087 43.913 
153.390 97.139 
151.317 28.683 

132.577 81.475 
153.026 53.522 
153.748 107.724 
90.169 33.460 
148.299 57.716 
59.391 120.609 

149.506 98.525 
72.276 26.252 
126.478 26.970 
146.539 89.831 
143.456 96.671 
59.391 120.609 

21.247 
53.372 

38.33 1 
64.864 

63.964 16.594 

30.494 

105.637 83.329 36.544 

47.423 

122.284 74.363 31.701 
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model the representations are in fact spin-+. It is interesting to speculate on the nature 
of superintegrable lattice models which require higher-dimensional representations. 
Even for the Ising case, an examination of Onsager’s original paper, in which a 
representation of only the ground-state sector is constructed, shows that the recovery 
of the Ising model from its irreducible representations is a problem at least as difficult 
as the original solution! For the chiral Potts model, the complicated sector structure 
would make such a venture even more daunting. 

We conclude with some comments on the superintegrability of the chiral Potts 
model in the principal direction. For the Ising model, which is always superintegrable, 
this provides an alternative framework for solution. However, for N > 2 ,  superintegra- 
bility is a very special property, and the two superintegrable manifolds are distinct. 
We are currently investigating the thermodynamics of the chiral Potts model in this 
new superintegrable solution manifold. This promises to be of interest, especially since 
the chiral Potts model is intrinsically anisotropic. The results will be published 
elsewhere. 
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Appendix 

We remarked at the end of section 5 on the complicated structure of the spectrum of 
the superintegrable spin chain: each fundamental sector labelled by a pair of quantum 
numbers P, Q breaks up into many irreducible representations of the Onsager algebra. 
For the three-state case, we have made numerical calculations for chains of length 
3 s L s 6 .  First we diagonalised the Hamiltonian in the relevant sector. The eigenvec- 
tors were then used to construct a basis in which the operators A. and A ,  are block 
diagonal, with each block irreducible. This being done, the irreducible blocks are, of 
necessity, of dimension 2” ,  and the spectrum additive, given by (3.2). To within double 
precision in FORTRAN we checked this property for each block, and then used (3.2) 
to extract the quantities a, p and the angles 6,. (For blocks of dimension 1, there is 
no such angle.) The information is displayed in table 1. The column labelled ‘dim’ 
is the total dimension of the sector (P ,  Q )  and the next column shows the dimension 
of each irreducible block. Then follow the values of a, p and 6,. In the case that 
there is more than one block of dimension 1 or 2 with the same value of a and p, we 
have indicated the total number of such blocks, and listed all the 6, alongside, one 
for each block. The rapid proliferation is apparent from this data. It is also evident 
that in any sector (P, Q )  all the angles 6, are distinct, although we know of no way to 
prove this. This conjecture has been checked for other values of N and L, but the 
data is not given here as it sheds no further light on the matter. 
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